- конечное расширение
- концае пашырэнне
Русско-белорусский математический словарь. 2013.
Русско-белорусский математический словарь. 2013.
Конечное расширение — расширение поля , такое, что E конечномерно над K как векторное пространство. Размерность векторного пространства E над K называется степенью расширения и обозначается [E:K]. Свойства конечных расширений Конечное расширение всегда алгебраично. В… … Википедия
Расширение поля — поле E, содержащее данное поле K в качестве подполя . Типы расширений Алгебраическое расширение расширение, все элементы которого являются алгебраическими над K, то есть любой элемент которого является корнем некоторого многочлена f(x) c… … Википедия
РАСШИРЕНИЕ — п о л у г р у п п ы А полугруппа S, содержащая Ав качестве подполугруппы. Обычно речь идет о расширениях полугруппы А, связанных с Атеми или иными условиями. Наиболее развита теория идеальных Р. полугрупп (полугрупп, содержащих Ав качестве… … Математическая энциклопедия
РАСШИРЕНИЕ — д и ф ф е р е н ц и а л ь н о г о п о л я F0 дифференциальное поле FЙF0. с таким множеством дифференцирований D, что ограничение D на F0 совпадает с множеством дифференцирований, заданных на F0. В свою очередь F0 будет д и ф ф ер е н ц и а л ь н… … Математическая энциклопедия
КУММЕРА РАСШИРЕНИЕ — расширение поля kхарактеристики вида где п некоторое натуральное число, причем предполагается, что поле kсодержит первообразный корень из 1 степени п(в частности, пвзаимно просто с рпри ). К. р. названы по имени Э. Куммера (Е. Kummer), впервые… … Математическая энциклопедия
СЕПАРАБЕЛЬНОЕ РАСШИРЕНИЕ — п о л я расширение K/kтакое, что для нек рого натурального п поля Kи линейно разделены над k(см. Линейно разделенные расширения). Расширение, не являющееся сепарабельным, наз. н е с е п а р а б е л ь н ы м. В дальнейшем рассматриваются только… … Математическая энциклопедия
ЦЕЛОЕ РАСШИРЕНИЕ — кольца расширение Bкоммутативного кольца Ас единицей такое, что любой элемент является целым над A, т. е. удовлетворяет нек рому уравнению вида где называемому уравнением целой зависимости. Элемент хцел над Атогда и только тогда, когда… … Математическая энциклопедия
Абелево расширение — В абстрактной алгебре абелево расширение поля расширение Галуа, для которого группа Галуа является абелевой. Важным частным примером является циклическое расширение, для которого группа Галуа является циклической. Например, расширение… … Википедия
Алгебраическое расширение — Алгебраическое расширение расширение поля , где каждый элемент алгебраичен над , то есть существует аннулирующий многочлен с коэффициентами из , для которого является корнем, т.е … Википедия
БИКОМПАКТНОЕ РАСШИРЕНИЕ — (би)компактификация, расширение топологического пространства, являющееся бикомпактным пространством. Б. р. существуют у любого топологич. пространства, у любого T1 пространства есть Б. р., являющиеся T1 пространствами, но наибольший интерес… … Математическая энциклопедия
Сепарабельное расширение — Сепарабельное расширение алгебраическое расширение поля , состоящее из сепарабельных элементов то есть таких элементов α, минимальный аннулятор f(x) над K для которых не имеет кратных корней. Производная f (x) должна быть по вышеуказанному… … Википедия